Existence of isoperimetric regions in non-compact Riemannian manifolds under Ricci or scalar curvature conditions
نویسندگان
چکیده
منابع مشابه
Instability of Elliptic Equations on Compact Riemannian Manifolds with Non-negative Ricci Curvature
We prove the nonexistence of nonconstant local minimizers for a class of functionals, which typically appear in scalar two-phase field models, over smooth N -dimensional Riemannian manifolds without boundary and nonnegative Ricci curvature. Conversely, for a class of surfaces possessing a simple closed geodesic along which the Gauss curvature is negative, we prove the existence of nonconstant l...
متن کاملNon-negative Ricci Curvature on Closed Manifolds under Ricci Flow
In this short paper we show that non-negative Ricci curvature is not preserved under Ricci flow for closed manifolds of dimensions four and above, strengthening a previous result of Knopf for complete non-compact manifolds of bounded curvature. This brings down to four dimensions a similar result Böhm and Wilking have for dimensions twelve and above. Moreover, the manifolds constructed here are...
متن کاملInstability results for an elliptic equation on compact Riemannian manifolds with non-negative Ricci curvature
We prove nonexistence of nonconstant local minimizers for a class of functionals, which typically appears in the scalar two-phase field model, over a smoothN−dimensional Riemannian manifold without boundary with non-negative Ricci curvature. Conversely for a class of surfaces possessing a simple closed geodesic along which the Gauss curvature is negative we prove existence of nonconstant local ...
متن کاملIsoperimetric Conditions and Diffusions in Riemannian Manifolds
We study diiusions in Riemannian manifolds and properties of their exit time moments from smoothly bounded domains with compact closure. For any smoothly bounded domain with compact closure, ; and for each positive integer k; we characterize the kth exit time moment of Brownian motion, averaged over the domain with respect to the metric density, using a variational quotient. We prove that for R...
متن کاملUniqueness of Ricci Flow Solution on Non-compact Manifolds and Integral Scalar Curvature Bound
of the Dissertation Uniqueness of Ricci Flow Solution on Non-compact Manifolds and Integral Scalar Curvature Bound
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Analysis and Geometry
سال: 2016
ISSN: 1019-8385,1944-9992
DOI: 10.4310/cag.2016.v24.n1.a5